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N U M E R I C A L  A N A L Y S I S  OF N E C K I N G  C O N D I T I O N S  

IN A T H E R M O V I S C O P L A S T I C  ROD IN T E N S I O N  

A. A. Bychkov and D. N. Karpinskii UDC 539.374 

Necking conditions in a therraoviscoplastic rod in tension are studied with allowance for heat 
transfer within a broad range of strain rates and temperatures. The problem is solved in a long- 
wave approzimation by the methods of linear perturbation analysis. The effect of the amplitude 
of the perturbations on the stability of plastic deformation is studied by means of nonlinear 
analysis. The calculations show that: (1) a neck is formed during tension of a solid rod for the 
values of the parameters realized in the ezperiment; (2) the critical strain during active tension 
depends appreciably on the wave number, particularly in the region of small wave numbers; 
3) the critical strain does not depend significantly on the wave number at low strain rates. 

I n t r oduc t i on .  It is known [1, 2] that large plastic strains are associated with the manifestation of 
strain anomalies: ductility troughs, elongation maxima, and superplasticity. These phenomena are generally 
seen after the localization of deformation. In the case of rods, strain localization is manifested in the formation 
of a neck. Two stages are usually recognized in the development of such localization [3]: 

(1) the formation of a "running" neck, i.e., the instantaneous initiation and stabilization of local 
thinnings of the specimen; 

(2) upon the subsequent attainment of compressive strain of the order of 0.15-0.25, the appearance of 
a stable neck that continuously decreases in volume until fracture occurs. 

Presnyakov [2] concluded that stable localization begins in connection with the growth of spontaneously 
forming necks at sufficiently large strains. The effect of the necks on each other makes the process stable. 

It is known [1, 2] that the fracture of a rod with the formation of a neck usually begins in the central 
fibers of the metal, where the contraction from the normal tensile stresses is greatest. However, conflicting 
results were obtained from later studies of the relationship between strain localization and the accumulation of 
discontinuities. For example, it was shown in [4] that the critical fragmented structure is formed and nucleated 
microcracks appear in the specimen only within the necked region and that these events occur long after the 
neck has been formed. During deformation, the specimen remains continuous for 90-95% of its life. The 
avalanche emergence of microcracks in the specimen occurs only at the very last moment, and their growth 
and coalescence results in its almost instantaneous fracture. 

On the other hand, it was indicated by Cheremskoi et al. [5] that the multiple formation of nucleated 
discontinuities generally begins during an early stage of plastic deformation and progresses in proportion to 
the strain. The intensive formation, growth, and coalescence of discontinuities occurs mainly in thin layers 
near the surface. The rate of accumulation and concentration of discontinuities in these layers is 1-3 orders 
greater than in the bulk of the material. 

Based on the results reported in [5], Naimark and Ladygin [3] concluded that it is impossible to 
adequately describe the localization of a plastic flow only in such variables as stress, strain, and strain rate. 
According to [3], it is also necessary to know the number, distribution, and rate of displacement of the 
defects in the material. A model of viscous fracture was presented in [6, 7] and accounts simultaneously for 
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nucleation and growth of voids. The model makes it possible to calculate the life of a uniformly stressed 
elementary volume of a solid. However, it does not consider the thermomechanical and geometric properties 
of the specimen and the test conditions. The contradictions in the experimental data in [4, 5] are too great 
to presently allow the construction of a rigorous theory of necking in rods in tension. 

Previous theoretical studies of the model did not account for the growth of discontinuities during 
deformation, although satisfactory agreement between experimental and theoretical results was reported in 
many investigations [see, e.g., [8-11]). Our goal here is to analyze the conditions of the formation of a stable 
neck in a tensioned rod made of a material with complex rheological properties that is free of discontinuities. 

1. Formula t ion  of t he  P rob lem.  The most general formulation of the problem of necking in a solid 
rod was given in [12, 13], which examined the plastic deformation of a rod in uniaxial tension. Here, it is 
assumed that the material of the rod is homogeneous and incompressible and has the density p0. The equation 
of motion, mass conservation law, compatibility equation, and heat-transfer equation for the given model have 
the form 

Oc /i Ov A(O, z) O~ C00 .020 O~ 
poAo(x)~tt = [aA(t,x)], cg-'-[ = --A ' Oz - A(t,x----~) Ot' -~ = k-~x2 + #a-~'  (1.1) 

where v is the rate of displacement, A(t, x) is the cross-sectional area at the moment of time t; Ao(x) = A(O, x), 
e is strain, 0 is the temperature, C is the heat capacity; k is the thermal conductivity, and/9 is the fraction 
of the plastic work that is converted to heat. 

The function a = Ft-lr models the nonlinear elastoplastic temperature response of the 
material. Here Ft -1 = (1 + 2Re/R) log(1 + R/2Rc) is a multiplier accounting for the fact that the stress state 
in the neck of the rod is triaxial [1], R(x, t) is the local radius of the cross section of the rod, and Rr is the 
radius of the neck, these two quantities being connected by the relation Re -1 = (02R/Ox2)(1 + (OR/Ox)2) -3/2. 

Assuming that the initial cross section of the rod is uniform Ao(x) = Ao = const, in accordance with 
the mass conservation law we obtain A(t, x) = Aoe -t.  Thus, system (1.1), which describes the behavior of the 
specimen for large plastic strains, has the form 

Oe e_eOv Ov ~ C00 .020 Oe (1.2) 
o-7 = = = k -j + 

As a = Ft - l r  we examine the relation [12, 13] 

a = pFt-len~'no v, (1.3) 

where p, n, m, and u are constants. 
We adopt the following initial and boundary conditions: 

V V 
t = o :   =eo, i = y o = L  Oo= o; 

(1.4) 
00 00 

z = 0 :  v=O, 0 z - 0 ;  z = / o :  v = V ,  eoz=O. 

Here lo is the length of the rod and V, 0o, and go are constants. 
2. Linear  Analysis .  We shall examine the homogeneous time-dependent solution (eo, ao, vo, 00, Fro) 

of Eqs. (1.2) and (1.3) at the initial moment of time to with the initial and boundary conditions (1.4). We 
represent the perturbation of this solution in the form 

~(x,  t) = co(t) -t- 6~(x, t) = ~o(t) -I- 6~oe~(~-t~ i~x, 

a ( x ,  t) = ao(t) -t- ~a(x,  t) = ao(t) -I- 6aoe~(t-t~ i~x, 

v(x, t) = vo(t) + 6v(z, t) = vo(t) + 6voe':(t-t~ i~z, (2.1) 
O(z, t) = Oo(t) + 60(x, t) = Oo(t) + 60oe'~(t-t~ ie~, 

Ft(x, t) = Fro(t) + 5Ft(x, t) = Fro(t) + 6Ftoe~(t-t~ i~,  

where the difference (~e, ~a, ~v, 60, ~Ft) is assumed to be small compared to (~o, cro, vo, 0o, Fro), r /=  6~/5e, and 
is the wave number. 
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Substituting (2.1) into (1.2) and considering that Fro = 1 and 5Fro = -(Ao/2~r)~2e-~~ we obtain 
a system of linear equations with the unknown ~o,  5~o, 5vo, and 800 

+ / = o ,  

--i~o'oe-~~ + i~e-e~ -- ~TPoSvo = O, (r/+ ~o)Sfo -- i ~ e - e ~  = O, 

,7#,roSeo + #~o5o'o - (C,7 + k~2)60o = O. 

The roots of the characteristic equation of the given system determine the stability of the solution of the 
problem, which corresponds to uniform tension of the rod (the homogeneous solution). 

The characteristic equation for the given system has the form 

aor/3 + azr/2 + a2r/+ a3 = O, (2.2) 
where 

a0 -- p0C; al = pok,2 i. C /po ,o  + ~e~. ,2e_2eo ) / ~ _ ~ .  x -/3~p0~b o'o', 

A~  2e- ,o _  oeo_2,o) 

a3=/~-~ ,. O~ go;2e-2"~162 + k ( ~ -  tr~ + 2 ~  (2e-2"O~rO) (4e-2~~ 

In accordance with the Routh-Hurwitz theory of stability, the solution of the problem will be stable 
if all of the roots of the characteristic equation of the given linearized system have a negative real part. In 
accordance with the Leonare-Schipper condition, this will be the case if all the coefficients of polynomial (2.2) 
are positive and if the condition a l a 2  - aoa3 > 0 is satisfied. 
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The following relation was used in cMculating ~o and 00: 
�9 o ] 1/0-,,). 

~o = ~-oe -e~ 0o=0o[1 Jr (1 - v)/3E0mP / u%-rm' du 
CO -" o 

Figure l a  shows the region of stability of the homogeneous solution of problem (1.2)-(1.4) with p = 
2.486.101~ , n = 0.52, C = 3.6- 100 J/(m3-K), k = 15 W/(m.K) ,  00 = 294 K, rn = 0.02, v = -0.5, 
p0 = 7800 kg/m 3, A0 = 4- 10 -~ m 2 [12] for different deformation rates of the rod 10 (curves 1-3 correspond to 
the values ~-0 = 1.66.10 - s ,  1.66- 10 -3, and 1.66.10 -2 sec-1). The solution will be stable against perturbation 
when ~ and ~ are below the respective curves. 

3. N o n l i n e a r  A n a l y s i s .  We performed a nonlinear analysis of the stability of the formation of a neck 
in a tensioned specimen to refine the results of the linear analysis. A strain perturbation of the following form 
was added to the homogeneous solution of the problem at the moment of t ime t = 0: 

ep = e060 s in  2 - a ) ) ,  

where 60 is the amplitude of the initial perturbation, ~ = ~ r / ( b -  a ) ,  and a < x < b (a and b are the coordinates 
of the left and right boundaries of the perturbed region). The choice of the given type of perturbation is 
related to the need to compare the results of linear and nonlinear analyses, and it allows us to study the 
conditions of neck formation in relation to the amplitude of the perturbation 60. Figure lb and c shows the 
results of calculations of the evolution of the plastic strain (1.1)-(1.3) with perturbed initial conditions for 
l0 = 0.05 m and ~0 = 0.01. The figure shows the dependences of the relative amplitude of the perturbation 6~ 
[6e(t) - (max ~(x, t) - m~n r t))/60, where 0 < z < 10] on the uniform strain t0 at 6o = 0.01 for ~ -- 563, 314, 

157, 104.7, 78.5, and 62.8 m -1 (curves 1-6). The results for the initial period of deformation corresponding 
to decay of the perturbation are shown in Fig. lb, while the results for the period characterized by growth of 
t'le perturbation are shown in Fig. lc. The differences in the behavior of the perturbation are relatively small 
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for ~ = 62.8, 78.5, and 104.7 m -1, so that curves 4-6 nearly coincide. 
We similarly examined the evolution of a temperature perturbation 

op = 0o o s i n  s - a ) ) .  

Figure ld shows the relative amplitude of the temperature perturbation ~o(t) = (mzax O(z, t) - n~n O(x, t))/~o, 
where 0 < z < I0 for the six values of ~ and 60, and go indicated above. Figure 2 shows the strain distribution 
Ae = ep - e 0  over time along the rod for four different modes of initial perturbation (~-0 = 1.66- 10 -5  sec-1). 
Figure 3 shows the temperature distribution A0 = 0p - 00 over time for two modes. 

4. Analysis of t he  Resul ts .  It can be seen from Fig. lb and c that the perturbation r initially decays 
rapidly. The minimum amplitude of the perturbation is lower and is reached more quickly for small ~ than 
for large ~. Then ge begins to slowly increase, and rapid growth of the perturbation is seen as the boundary 
of the stable region is approached (Fig. la). Here, the larger the value of ~, the slower the growth of the 
perturbation and the later the moment at which the accelerated development of instability is seen. As regards 
the temperature perturbation 0p, higher values of ~ correspond to lower values of the minimum perturbations, 
and their abrupt growth begins later than for lower values of ~. Calculations performed for different amplitudes 
of the initial perturbation 10 -s  < ~0 < 10 -2 showed that the results are nearly independent of 60. Figures 2 
and 3 refine these results, demonstrating that perturbations of any initial shape decay rapidly during the first 
stage and that A~ then increases near the ends of the specimen and decreases in its central part. The opposite 
pattern is seen for the evolution of A0. We emphasize that Figs. 2 and 3 show results of calculations performed 
for active tension with a high strain rate ~-0. It was found that, for small strains [0, the initial perturbations 
which develop in the stable region completely die out and could not be the reason for the formation of a 
neck. The critical strain d-0 is not significantly dependent on e0c at sufficiently small ~ (curve 1 in Fig. la). 
Calculations show that a neck is formed in a solid rod subjected to tension and that the conditions of its 
formation for the chosen material constants of the rod can be realized in an experiment. 
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